Credit Default Swap Spreads and Systemic Financial Risk

Stefano Giglio

University of Chicago, Booth School of Business
September 29, 2011

Introduction

- What is the joint probability of default of large financial institutions?
- Systemic default risk:

$$
\operatorname{Pr}\{\text { at least } \mathrm{LF} / \mathrm{s} \text { default }\}
$$

- Banks are interconnected and exposed to common shocks
- Defaults not independent even at short horizons
- Severe consequences of multiple defaults

Introduction: this paper

- Difficult to measure
- Rare events
- Prices that reflect individual defaults (bonds,CDSs) but not multiple defaults
- Traditional measures: aggregate individual risks
- In this paper

1. Exploit counterparty risk to learn about $P\left(A_{i} \cap A_{j}\right)$: enrich information set
2. Derive tightest bounds on multiple default risk

CDS and counterparty risk

- Credit Default Swap is an OTC contract designed to transfer the credit risk of the reference entity
- Counterparty risk in CDSs: if seller defaults, contract terminates
- "Double default" relevant for pricing: discount relative to the corresponding bond
- Bond issued by $i: P\left(A_{i}\right)$. CDS by j on i : $P\left(A_{i}\right)-P\left(A_{i} \cap A_{j}\right)$

CDS and counterparty risk

- Collateral
- static: very costly -> dynamic
- Not widely used with dealers (66% of contracts in 2008)
- When margin set to current exposure, subject to jumps
- Collateral can be less than current exposure (Goldman)
- Buyers aware of counterparty risk (CDS against seller)

Theory

- Assume we observe

$$
\begin{gathered}
p_{i}: P\left(A_{i}\right) \\
z_{j i}: P\left(A_{i}\right), P\left(A_{i} \cap A_{j}\right)
\end{gathered}
$$

- Look for P_{r} : $P\{$ at least r default $\}$ (information of order N - systemic)

$$
\begin{gathered}
P_{1}=P\left(A_{1} \cup A_{2} \cup A_{3}\right) \\
P_{2}=P\left(\left(A_{1} \cap A_{2}\right) \cup\left(A_{2} \cap A_{3}\right) \cup\left(A_{1} \cap A_{3}\right)\right) \\
P_{3}=P\left(A_{1} \cap A_{2} \cap A_{3}\right)
\end{gathered}
$$

Theory

- Becomes

$$
\max \operatorname{Pr}\{\text { at least } r \text { default }\} \quad \max _{p} c_{r}^{\prime} p
$$

$$
\begin{gathered}
P\left(A_{i}\right)=a_{i} \\
P\left(A_{i} \cap A_{j}\right)=a_{i j}
\end{gathered}
$$

Consistent probability system

$$
\begin{gathered}
p \geq 0 \\
i^{\prime} p=1
\end{gathered}
$$

Implementation

- Assume a simple, discretized pricing model for bonds and CDSs
- Constant hazard rates
- If two banks default in the same month $->$ double default
- Assume recovery rates $\mathrm{R}=30 \%, \mathrm{~S}=30 \%$
- The price of a bond depends both on $P\left(A_{i}\right)$ and on liquidity γ_{t}^{i} (transaction cost, cost of capital).

Implementation

- Impose a lower bound for the liquidity process γ_{i} of bonds
- Calibrating $\gamma_{t}^{i} \geq \underline{\gamma}_{t}^{i}$, obtain

$$
P\left(A_{i}\right) \leq h_{i}\left(\underline{\gamma}_{t}^{i}\right)
$$

- Nonnegative
- Calibrated to 2004
- Calibrated to nonfinancial firms

Implementation

- Observe average CDS spreads:
- $z_{j i}$ linear function of $P\left(A_{i}\right)$ and $P\left(A_{i} \cap A_{j}\right)$
- \bar{z}_{i} linear function of $P\left(A_{i}\right)$ and $\frac{1}{N-1} \sum_{j \neq i} P\left(A_{i} \cap A_{j}\right)$
- One constraint for each i

Systemic risk - $\gamma_{t}^{i} \geq 0$

Systemic risk - $\gamma_{t}^{i} \geq 0$

Systemic risk - $\gamma_{t}^{i} \geq 0$

Systemic risk measures: assumptions on liquidity

Picture of network 8/4/2008

Marginal and pairwise probabilities

Contribution: $\operatorname{Pr}\{$ at least $4 \cap j\}$

Explore: Contrib vs. MES

Explore: Contrib vs. MES

Explore: Contrib vs. MES

Conclusion

- Taking counterparty risk into account, CDS provide information on pairwise default probabilities
- These can be optimally aggregated across the financial network: LP bounds
- The optimal bounds are tight under assumptions on liquidity and allow to distinguish idiosyncratic/systemic risk
- Also learn about the contribution of each institution

Conclusion

- We learn that systemic risk really started to increase in late 2008:
- If systemic risk was so high in January-March 2008, why did the average CDS spread go up so much?
- Why were people so keen to buy insurance from unreliable counterparties?
- Things to explore
- Correlation of contribution to systemic risk with other measures (MES, CoVar, stress test)
- Pairwise default risk and correlation of equity returns
- Systemic risk and puts

Extra Slides

- Additional details
- \quad Simple Example of Bounds
- Linear Programming Algorithm
- - Implementation
- Pricing Formulas
\rightarrow Data
- Symmetry

Extra Slides

- Robustness to assumptions on recovery rates:
- Robustness to R and S
- \quad Stochastic and Time Varying Recovery Rates
- All other robustness tests:
- Robustness Results
- Derivations
- References:
- Arora et al.

Theory: simple example

Bank 1

Bank 3

Bank 1

Bank 3

Theory: simple example

- Suppose we observe, from bonds:

$$
P\left(A_{1}\right)=P\left(A_{2}\right)=P\left(A_{3}\right)=0.2
$$

- From CDSs:

$$
\begin{gathered}
P\left(A_{1} \cap A_{2}\right)=P\left(A_{2} \cap A_{3}\right)=0.07 \\
P\left(A_{1} \cap A_{3}\right)=0.01
\end{gathered}
$$

- Tightest bounds

$$
\begin{gathered}
0.45 \leq P_{1} \leq 0.46 \\
0.13 \leq P_{2} \leq 0.15 \\
0 \leq P_{3} \leq 0.01
\end{gathered}
$$

Theory: simple example

- Heterogeneity. Suppose still

$$
P\left(A_{1}\right)=P\left(A_{2}\right)=P\left(A_{3}\right)=0.2
$$

but now we only know

$$
\frac{P\left(A_{1} \cap A_{2}\right)+P\left(A_{2} \cap A_{3}\right)+P\left(A_{1} \cap A_{3}\right)}{3}=0.05
$$

- Then

$$
\begin{array}{cc}
\text { Full information } & \text { Only average } \\
0.45 \leq P_{1} \leq 0.46 & 0.45 \leq P_{1} \leq 0.50 \\
0.13 \leq P_{2} \leq 0.15 & 0.05 \leq P_{2} \leq 0.15 \\
0 \leq P_{3} \leq 0.01 & 0 \leq P_{3} \leq 0.05
\end{array}
$$

Linear Programming Algorithm

- Start from problem:

$$
\max P_{r}
$$

S.t.

$$
P\left(A_{i}\right)=a_{i}
$$

$$
P\left(A_{i} \cap A_{j}\right)=a_{i j}
$$

Linear Programming Algorithm

- Obtain:

$$
\max _{p} c_{r}^{\prime} p
$$

s.t.

$$
\begin{gathered}
p \geq 0 \\
i^{\prime} p=1 \\
A p=b
\end{gathered}
$$

Linear Programming Algorithm

- Start with matrix $B\left(2^{N}, N\right)$
- Rows are binary representation of $0 \ldots 2^{N}-1$

$$
B=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
& \cdots & & \\
1 & 1 & 1 & 1
\end{array}\right]
$$

- Each row is event of type

$$
A_{1}^{*} \cap A_{2}^{*} \cap \ldots \cap A_{N}^{*}
$$

- where $A_{j}^{*}=A_{j}$ if element j of the row is 1 , and $A_{j}^{*}=\bar{A}_{j}$ otherwise

Linear Programming Algorithm

- p contains probabilities of these events

$$
\begin{gathered}
p \geq 0 \\
p^{\prime} i=1
\end{gathered}
$$

- $P\left(A_{i}\right)$:

$$
P\left(A_{i}\right)=\sum_{j: B(j, i)=1} p_{j}
$$

or

$$
\begin{gathered}
P\left(A_{i}\right)=a^{i^{\prime}} p \\
a_{j}^{i}=B(j, i)
\end{gathered}
$$

Linear Programming Algorithm

- $P\left(A_{i} \cap A_{k}\right)$:

$$
P\left(A_{i} \cap A_{k}\right)=\sum_{j: B(j, i)=1 \text { and } B(j, k)=1} p_{j}
$$

or:

$$
P\left(A_{i} \cap A_{k}\right)=b^{i k^{\prime}} p
$$

for a vector $b_{i k}$ of size $\left(2^{N}, 1\right)$ s.t.:

$$
b_{j}^{i k}=B(j, i) B(j, k)
$$

Linear Programming Algorithm

- P_{r} :

$$
P_{r}=\sum_{j:\left(\sum_{h=1: N} B(j, h)\right) \geq r} p_{j}
$$

or

$$
P_{r}=c^{r^{\prime}} p
$$

for a vector c^{r} of size $\left(2^{N}, 1\right)$ s.t.:

$$
c_{j}^{r}=I\left[\sum_{h=1: N} B(j, h) \geq r\right]
$$

Implementation: 1 - Pricing

- Contracts span long horizons
- Contracts priced again every time t looking forward, assuming
- Constant hazard rates h_{t}^{i}
- Constant bond liquidity premium γ_{t}^{i}
- Discretize by month
- Joint default in a month <=> double default
- Seller default and reference survives until next month -> small change in reference risk
- Recovery $\mathrm{R}=30 \%, \mathrm{~S}=30 \%$

Implementation: 1 - Pricing (bonds)

$$
\begin{gathered}
B^{i j}\left(t, T^{i j}\right)=c^{i j}\left(\sum_{s=t+1}^{T^{i j}} \delta(t, s)\left(1-h_{t}^{i}\right)^{s-t}\left(1-\gamma_{t}^{i}\right)^{s-t}\right)+ \\
+\delta\left(t, T^{i j}\right)\left(1-h_{t}^{i}\right)^{T i j-t}\left(1-\gamma_{t}^{i}\right)^{i j-t} \\
+R\left(\sum_{s=t+1}^{T^{i j}} \delta(t, s)\left(1-h_{t}^{i}\right)^{s-t-1}\left(1-\gamma_{t}^{i}\right)^{s-t-1} h_{t}^{i}\right)
\end{gathered}
$$

Implementation: 1 - Pricing (bonds)

- Bond liquidity: constant conveniency yield γ_{t}^{i}
- Interpretation. Garleanu and Pedersen (2010):

$$
E_{t}\left[R_{t+1}^{i j}-R_{t+1}^{f}\right]=-\frac{\operatorname{Cov}_{t}\left(M_{t+1}, R_{t+1}^{i j}-R_{t+1}^{f}\right)}{E_{t}\left[M_{t+1}\right]}+m_{t}^{i} x_{t} \psi_{t}
$$

- m_{t}^{i} margin for senior unsecured bonds of firm i
- x_{t} proportion of agents constrained
- ψ_{t} shadow cost of capital

$$
\gamma_{t}^{i} \approx m_{t}^{i} x_{t} \psi_{t}=\alpha^{i} \lambda_{t}
$$

Implementation: 1 - Pricing (CDSs)

$$
\begin{gathered}
\sum_{s=t}^{T-1} \delta(t, s)\left(1-P\left(A_{i} \cup A_{j}\right)\right)^{s-t} z_{j i}= \\
=\sum_{s=t+1}^{T} \delta(t, s)\left(1-P\left(A_{i} \cup A_{j}\right)\right)^{s-t-1} \\
\left\{\left[P\left(A_{i}\right)-P\left(A_{i} \cap A_{j}\right)\right](1-R)+S\left[P\left(A_{i} \cap A_{j}\right)\right](1-R)\right\}
\end{gathered}
$$

Implementation: 2 - Calibration of liquidity γ_{t}^{i}

- Bond liquidity: constant conveniency yield $\gamma_{t}^{i}=\alpha^{i} \lambda_{t}$
- λ_{t} : common variations in margins, cost of capital, constrained agents
- Calibrating $\gamma_{t}^{i} \geq \underline{\gamma}_{t}^{i}$, obtain

$$
P\left(A_{i}\right) \leq h_{i}\left(\underline{\gamma}_{t}^{i}\right)
$$

1. $\gamma_{t}^{i} \geq 0$
2. $\gamma_{t}^{i} \geq \alpha^{i}$: liquidity at least as of 2004

Implementation: 2 - Calibration of liquidity γ_{t}^{i}

3. For a group K of A-rated (or better) nonfinancial firms

- double default risk is low
- calibrate matching the bond-CDS basis

$$
\gamma_{t}^{k}=\alpha^{k} \lambda_{t}^{*}
$$

- and assume that for financials

$$
\gamma_{t}^{i} \geq \alpha^{i} \lambda_{t}^{*}
$$

Implementation: 3 - Availability of CDS spreads

- Observe average CDS spreads:
- $z_{j i}$ linear function of $P\left(A_{i}\right)$ and $P\left(A_{i} \cap A_{j}\right)$
- \bar{z}_{i} linear function of $P\left(A_{i}\right)$ and $\frac{1}{N-1} \sum_{j \neq i} P\left(A_{i} \cap A_{j}\right)$
- One constraint for each i
- Do not observe contributors of Markit quotes
- Pick 15 dealers covering 90\% of CDS market

Pricing formulas: bonds

Bonds:

$$
\begin{aligned}
& B^{i j}\left(t, T^{i j}\right)=c^{i j}\left(\sum_{s=t+1}^{T^{i j}} \delta(t, s)\left(1-h_{t}^{i}\right)^{s-t}\left(1-\gamma_{t}^{i}\right)^{s-t}\right)+ \\
& \quad+\delta\left(t, T^{i j}\right)\left(1-h_{t}^{i}\right)^{T^{i j}-t}\left(1-\gamma_{t}^{i}\right)^{T^{i j}-t} \\
& \quad+R\left(\sum_{s=t+1}^{i^{i j}} \delta(t, s)\left(1-h_{t}^{i}\right)^{s-t-1}\left(1-\gamma_{t}^{i}\right)^{s-t-1} h_{t}^{i}\right)
\end{aligned}
$$

Pricing formulas: CDSs

$$
\begin{gathered}
\sum_{s=t}^{T-1} \delta(t, s)\left(1-P\left(A_{i} \cup A_{j}\right)\right)^{s-t} t_{z j}= \\
=\sum_{s=t+1}^{T} \delta(t, s)\left(1-P\left(A_{i} \cup A_{j}\right)\right)^{s-t-1} \\
\left\{\left[P\left(A_{i}\right)-P\left(A_{i} \cap A_{j}\right)\right](1-R)+S\left[P\left(A_{i} \cap A_{j}\right)\right](1-R)\right\}
\end{gathered}
$$

Pricing formulas: CDSs

Linearize to use as a constraint:

$$
z_{j i, t}=\left(P\left(A_{i}\right)-(1-S) P\left(A_{i} \cap A_{j}\right)\right) \frac{\left[\sum_{s=t+1}^{T} \delta(t, s)\right](1-R)}{\left[\sum_{s=t}^{T-1} \delta(t, s)\right]}
$$

- Bonds
- Look on Bloomberg and Markit for all bonds that are issued by institution i
- Restrict to senior unsecured fixed or zero coupon: no callable, putable, sinkable, structured
- TRACE-eligible bonds: use TRACE closing price
- Other bonds: generic closing price

Data

- Risk-free rate: zero-coupon government bonds
- CDS: Markit
- Period: 2004 to June 2010

Table 1

	Avg valid bonds	2004	2005	2006	2007	2008	2009	2010
Abn Amro	3.3	1.8	2.2	4.0	4.4	3.0	3.5	5.3
Bank of America	32.3	17.5	25.4	29.3	32.9	35.3	41.8	55.8
Barclays	14.8	3.1	3.0	2.4	2.5	9.1	38.5	78.0
Bear Stearns	11.4	7.2	9.8	12.6	15.3	15.4	-	-
Bnp Paribas	7.0	0.5	2.0	3.0	3.9	6.7	18.0	22.6
Citigroup	36.5	21.6	24.3	31.7	40.0	43.2	49.5	54.5
Credit Suisse	5.4	1.9	2.3	2.8	2.7	5.0	11.6	17.4
Deutsche Bank	42.1	5.3	10.4	42.3	68.9	54.4	58.8	67.9
Goldman Sachs	39.6	19.3	26.1	34.3	40.4	49.0	57.0	63.0
JP Morgan	17.3	6.6	11.1	14.0	17.4	22.2	27.4	27.9
Lehman Brothers	20.1	10.5	15.2	20.5	26.5	31.4	-	-
Merrill Lynch	35.7	22.7	33.0	38.4	43.0	44.0	-	-
Morgan Stanley	25.5	12.5	14.6	17.5	22.2	30.0	45.0	49.0
UBS	8.2	0.3	0.7	1.0	3.1	8.3	22.4	36.6
Wachovia	6.1	2.9	3.5	5.7	7.4	9.1	7.7	7.3

Note: first column reports average number of bonds for each institution that are used for the estimation of marginal default probabilities. Columns 2-8 break this number down by year.

Table 2

Avg CDS spread Std CDS spread Min spread Max spread

Abn Amro	45.8	46.1	5.0	190.5
Bank of America	66.5	71.7	7.4	390.7
Barclays	54.3	60.0	5.5	261.9
Bear Stearns	54.2	69.7	18.0	736.9
Bnp Paribas	33.8	32.2	5.4	163.9
Citigroup	100.4	129.7	6.5	638.3
Credit Suisse	53.0	51.3	9.0	261.4
Deutsche Bank	49.8	45.1	8.9	190.0
Goldman Sachs	84.2	86.4	17.2	579.3
JP Morgan	53.1	42.8	10.9	227.3
Lehman Brothers	70.7	86.9	18.0	701.7
Merrill Lynch	59.9	71.9	14.4	447.7
Morgan Stanley	112.5	144.2	16.6	1385.6
UBS	59.3	72.4	4.2	357.2
Wachovia	73.9	93.5	9.3	1487.7

Table 2

	Avg basis	Std basis	Min basis	Max basis
Abn Amro	-46.2	44.4	-248.2	34.6
Bank of America	-71.9	64.8	-412.5	217.5
Barclays	-41.2	60.1	-324.8	111.6
Bear Stearns	-53.6	24.6	-298.0	40.6
Bnp Paribas	-53.9	49.7	-321.8	86.8
Citigroup	-76.5	88.1	-804.6	59.2
Credit Suisse	-50.5	44.0	-276.6	52.6
Deutsche Bank	-24.4	27.6	-174.2	65.2
Goldman Sachs	-79.0	91.3	-502.4	75.1
JP Morgan	-76.5	57.9	-322.2	32.1
Lehman Brothers	-61.9	44.5	-540.0	10.9
Merrill Lynch	-51.7	40.4	-200.0	26.2
Morgan Stanley	-82.6	107.3	-1256.5	223.2
UBS	-65.4	58.5	-343.5	34.2
Wachovia	-87.2	120.1	-2509.8	88.0

Symmetry

- p is symmetric if it does not depend on the ordering of A_{i} 's.
- A LP problem

$$
\begin{gathered}
\max c^{\prime} p \\
\text { s.t. } A p \leq b
\end{gathered}
$$

is symmetric if $c^{\prime} p$ and all constraints do not depend on the ordering of A_{i} 's.

- Example: union of all events, average of probabilities
- Proposition 3: problem is symmetric $=>\exists$ symmetric solution
- Corollary: symmetric systems have the widest bounds given average probabilities

Symmetry

Robustness: R and S

- Dependence on R
- Two-period case:

$$
\begin{gathered}
p_{i}=1-(1-R) P\left(A_{i}\right) \\
z_{j i}=(1-R) P\left(A_{i}\right)-(1-S)(1-R) P\left(A_{i} \cap A_{j}\right)
\end{gathered}
$$

- Higher $\mathrm{R} \Rightarrow$ lower yield \Rightarrow bond-implied probability scales up
- Higher $\mathrm{R} \Rightarrow$ lower CDS spread \Rightarrow cds-implied probabilities scale up
- Bounds scale up

Robustness: R and S

- Dependence on S
- Depends on whether the basis can be all explained by counterparty risk
- Remember the constraints:

$$
\begin{gathered}
P\left(A_{i}\right) \leq a_{i}\left(\gamma_{i}\right) \\
P\left(A_{i}\right)-(1-S) \frac{\sum_{j \neq i} P\left(A_{i} \cap A_{j}\right)}{N-1}=\bar{p}_{i}\left(\bar{z}_{i}\right)
\end{gathered}
$$

- $\mathrm{S}=1 \Rightarrow$ For each $i, P\left(A_{i}\right)=\bar{p}_{i}$
- Decrease $\mathrm{S} \Rightarrow P\left(A_{i}\right)>\bar{p}_{i}$: counterparty risk
- But if S large, $P\left(A_{i}\right)-\bar{p}_{i}$ requires high counterparty risk

Robustness: R and S

$$
\begin{gathered}
P\left(A_{i}\right) \leq a_{i}\left(\gamma_{i}\right) \\
P\left(A_{i}\right)-(1-S) \frac{\sum_{i \neq j} P\left(A_{i} \cap A_{j}\right)}{N-1}=\bar{p}_{i}\left(\bar{z}_{i}\right)
\end{gathered}
$$

- S decreases more $\Rightarrow P\left(A_{i} \cap A_{j}\right)$ can fill a larger gap \Rightarrow systemic risk increases
- This ignores constraints from bonds
- Once $P\left(A_{i}\right)$ hits the upper bound $a_{i}\left(\gamma_{i}\right), P\left(A_{i} \cap A_{j}\right)$ has to decrease

Robustness: R and S

- Example: June 25, 2008. Bank of America, Citigroup, GS. Probabilities are average monthly risk-neutral probabilities in bp.

Bank	$a_{i}(0)$	\bar{p}_{i}
1	25	14
2	29	18.5
3	27	17

Robustness: R and S

Robustness: R and S

Bank	$a_{i}(0)$	\bar{p}_{i}
1	$15($ not 25$)$	14
2	29	18.5
3	27	17

Robustness: R and S

Model		Max P1					
R	S	2007	$\begin{aligned} & \text { Jan } 2008 \\ & \text { to Bear } \end{aligned}$	Bear to Lehman	Month after Lehman	$\begin{gathered} \text { Oct } 2008 \\ \text { to April } \\ 2009 \\ \hline \hline \end{gathered}$	After April 2009
0.10	0.10	50.4	178.0	168.8	298.1	221.7	133.0
0.10	0.30	50.4	178.0	168.8	298.1	221.7	133.0
0.10	0.40	50.4	178.0	168.8	298.1	221.7	133.0
0.10	0.70	50.4	178.0	168.8	298.1	221.7	133.0
0.10	0.90	50.4	178.0	168.8	298.1	221.7	133.0
0.10	1.00	50.4	178.0	168.8	298.1	221.7	133.0
0.30	0.30	64.8	228.9	217.0	383.3	285.0	171.1
0.30	0.40	64.8	228.9	217.0	383.3	285.0	171.1
0.30	0.70	64.8	228.9	217.0	383.3	285.0	171.1
0.30	0.90	64.8	228.9	217.0	383.3	285.0	171.1
0.30	1.00	64.8	228.9	217.0	383.3	285.0	171.1
0.40	0.40	75.6	267.1	253.2	447.1	332.5	199.6
0.40	0.70	75.6	267.1	253.2	447.1	332.5	199.6
0.40	0.90	75.6	267.1	253.2	447.1	332.5	199.6
0.40	1.00	75.6	267.1	253.2	447.1	332.5	199.6

Robustness: R and S

Model

R	S	2007	$\begin{aligned} & \text { Jan } 2008 \\ & \text { to Bear } \end{aligned}$	Bear to Lehman	Month after Lehman	$\begin{gathered} \text { Oct } 2008 \\ \text { to April } \\ 2009 \\ \hline \hline \end{gathered}$	After April 2009
0.10	0.10	2.2	2.3	15.7	24.3	49.1	30.9
0.10	0.30	2.4	2.5	17.3	25.7	48.8	31.2
0.10	0.40	2.5	2.6	18.2	26.2	48.6	31.2
0.10	0.70	2.8	2.9	20.0	27.7	47.2	30.6
0.10	0.90	3.3	3.3	21.5	28.4	46.0	29.7
0.10	1.00	12.6	44.5	42.2	70.0	55.4	33.3
0.30	0.30	3.3	3.5	24.7	42.1	64.8	40.6
0.30	0.40	3.4	3.7	25.6	42.5	64.2	40.5
0.30	0.70	3.7	4.1	27.9	43.7	62.0	39.6
0.30	0.90	4.1	4.6	29.5	44.3	60.6	38.3
0.30	1.00	16.2	57.2	54.3	90.0	71.2	42.8
0.40	0.40	4.0	4.4	32.0	54.0	76.8	47.5
0.40	0.70	4.3	5.0	34.7	54.0	74.0	46.3
0.40	0.90	4.8	5.7	36.1	53.3	72.0	44.8
0.40	1.00	18.9	66.8	63.3	104.9	83.1	49.9

Robustness: R and S

Model		Min P1					
R	S	2007	$\begin{aligned} & \text { Jan } 2008 \\ & \text { to Bear } \end{aligned}$	Bear to Lehman	Month after Lehman	Oct 2008 to April 2009	After April 2009
0.10	0.10	42.6	164.9	121.7	221.9	109.8	62.3
0.10	0.30	42.0	164.3	117.4	217.3	101.3	56.1
0.10	0.40	41.8	163.8	115.0	214.7	97.0	53.0
0.10	0.70	40.9	162.2	107.2	205.8	85.8	44.4
0.10	0.90	39.1	160.6	101.1	202.8	80.6	40.3
0.10	1.00	7.4	27.3	25.1	84.7	41.3	22.6
0.30	0.30	53.9	210.3	146.4	252.2	125.9	71.3
0.30	0.40	53.6	209.5	143.1	248.0	120.4	67.3
0.30	0.70	52.5	206.6	132.9	237.4	106.5	56.6
0.30	0.90	50.9	204.8	125.3	232.8	99.4	51.6
0.30	1.00	9.5	35.1	32.2	108.9	53.1	29.0
0.40	0.40	62.4	243.7	161.9	281.8	135.8	77.9
0.40	0.70	61.2	241.3	149.8	273.5	120.1	65.6
0.40	0.90	59.7	238.9	142.3	268.4	111.1	59.7
0.40	1.00	11.1	40.9	37.6	127.0	61.9	33.8

Time-varying recovery rates

- R could be lower in bad times
- Adjusting $R \downarrow$ would imply bounds \downarrow
- S could be lower in bad times
- lower S -> joint default risk has greater effect on basis
- in peak episodes, basis is small -> joint default risk even smaller

Stochastic Recovery Rates

- Bonds and CDSs price in stochastic recovery rate
- Recovery rate depends on number of defaults
- Simple case: R_{H} if 1 bank defaults, R_{L} if more banks default
- Call $B\left(R_{H}, R_{L}\right)$ the price of a bond, $z\left(R_{H}, R_{L}\right)$ the price of a CDS

Stochastic Recovery Rates

- Show that:

$$
B\left(R_{H}, R_{L}\right)=B\left(R_{L}, R_{L}\right)+Y_{\text {bond }}\left(R_{H}, R_{L}\right)
$$

- And:

$$
\begin{gathered}
\sum_{s=1}^{T} \delta(0, s-1)\left(1-P\left(A_{i} \cup A_{j}\right)\right)^{s-1} z_{j i}\left(R_{H}, R_{L}\right)= \\
=\sum_{s=1}^{T} \delta(0, s-1)\left(1-P\left(A_{i} \cup A_{j}\right)\right)^{s-1} z_{j i}\left(R_{L}, R_{L}\right)-Y_{c d s}\left(R_{H}, R_{L}\right)
\end{gathered}
$$

- with $Y_{\text {bond }} \approx Y_{c d s}$

Stochastic Recovery Rates

- Yields and CDS spreads are
- Rescaled as if $R=R_{L}$
- Shifted by a constant
- Adding Y to both bonds and CDSs does not change the basis
- The relevant rate is R_{L}

Other robustness tests

Model	Max P1					
2007	Jan 2008 to Bear	Bear to Lehman	Month after Lehman	Oct 2008 to April 2009	After April 2009	
Baseline	$\mathbf{6 4 . 8}$	$\mathbf{2 2 8 . 9}$	$\mathbf{2 1 7 . 0}$	$\mathbf{3 8 3 . 3}$	$\mathbf{2 8 5 . 0}$	$\mathbf{1 7 1 . 1}$
Using swap rates	64.8	229.0	217.1	383.6	285.2	171.1
US banks	49.4	166.7	156.7	278.7	182.7	102.2
US banks, larger trans	46.5	166.4	156.6	278.7	183.3	96.5
Reweight top 5 banks	65.0	228.9	217.0	383.3	285.8	171.3
Reweight, decreasing	65.0	228.9	217.0	383.3	285.8	171.3
Alternative bond model	35.2	112.0	162.2	579.0	216.9	51.9

Other robustness tests

Model	Max P4					
2007	Jan 2008 to Bear	Bear to Lehman	Month after Lehman	Oct 2008 to April 2009	After April 2009	
Baseline	$\mathbf{3 . 3}$	$\mathbf{3 . 5}$	$\mathbf{2 4 . 7}$	$\mathbf{4 2 . 1}$	$\mathbf{6 4 . 8}$	$\mathbf{4 0 . 6}$
Using swap rates	2.3	2.6	19.3	42.5	58.1	28.0
US banks	1.3	0.8	11.3	36.9	36.0	17.0
US banks, larger trans	1.4	1.0	16.6	39.6	42.1	16.6
Reweight top 5 banks	5.3	5.0	32.4	50.3	74.5	44.7
Reweight, decreasing	5.2	5.1	32.9	50.1	75.6	44.8
Alternative bond model	2.6	4.7	18.7	49.5	36.7	10.1

Other robustness tests

Model	Min P1					
	2007	$\begin{aligned} & \text { Jan } 2008 \\ & \text { to Bear } \end{aligned}$	Bear to Lehman	Month after Lehman	```Oct 2008 to April 2009```	After April 2009
Baseline	53.9	210.3	146.4	252.2	125.9	71.3
Using swap rates	56.6	217.0	156.1	258.2	141.5	97.8
US banks	43.3	157.9	117.0	187.0	110.6	62.3
US banks, larger trans	39.8	154.1	109.8	168.8	100.6	57.4
Reweight top 5 banks	50.4	204.8	128.2	243.5	121.5	67.5
Reweight, decreasing	50.9	204.4	128.2	249.7	121.1	64.6
Alternative bond model	25.2	92.4	107.5	397.8	121.3	26.6

Other robustness tests - derivations

- Alternative Pricing Model
- Using Swap Rates
- Different weighting in CDS

Different currencies

TRACE, larger transactions

Robustness: Pricing model

- Hazard rate deterministic but not constant:

$$
h_{t+s}=\left(1-\rho_{t}\right) \bar{h}_{t}+\rho_{t} h_{t+s-1}
$$

- CDS: assume joint default risk inherits ρ_{t} and $\overline{h_{t}} / h_{t}$ from reference entity
- Approximate around $h_{t}=0$

Robustness: Swap rates

- Interest Rate Swaps
- contain counterparty risk
- are not indexed to a risk-free short rate
- Swap rates are higher than Treasuries -> lower systemic risk
- However, partly offset by calibrated liquidity process

Robustness: Weighting scheme

- If not all dealers post quotes every day, observed average will overrepresent more active banks
- Assume CDS spread is:
$\bar{z}_{i}=\left[P\left(A_{i}\right)-(1-S)\left(\sum_{i \neq j} w_{j} P\left(A_{i} \cap A_{j}\right)\right)\right] \frac{\left[\sum_{s=t+1}^{T} \delta(t, s)\right](1-R)}{\left[\sum_{s=t}^{T-1} \delta(t, s)\right]}$ with $w_{j} \neq \frac{1}{N-1}$

Robustness: Weighting scheme

- Obtain list of top 5 counterparties by trade count
- Two schemes (call w the weight of banks 6-15):

1. $5 w, 5 w, 5 w, 5 w, 5 w$
2. $10 w, 8 w, 6 w, 4 w, 2 w$

Robustness: Currencies

- Bonds and CDSs denominated in different currencies
- What assumptions do we need to mix them?
- Two bonds, same firms, different currencies
- $s=0$ or i, default state
- e exchange rate
- $m_{s e}$ SDF
- Joint distribution of s and e

$$
f(s, e)=\pi_{s} f_{s}(e)
$$

Robustness: Currencies

$$
\begin{gathered}
p_{i}^{\$}=\pi_{0} E\left[m_{s e} \mid s=0\right]+R \pi_{i} E\left[m_{s e} \mid s=i\right] \\
=E\left[m_{s e}\right]-(1-R) \pi_{i} E\left[m_{s e} \mid s=i\right] \\
p_{i}^{E} e_{0}=E\left[e \cdot m_{s e}\right]-(1-R) \pi_{i} E\left[e \cdot m_{s e} \mid s=i\right] \\
t^{\$}=E\left[m_{s e}\right] \\
t^{E} e_{0}=E\left[e \cdot m_{s e}\right]
\end{gathered}
$$

Robustness: Currencies

$$
P\left(A_{i}\right)=\pi_{i} \frac{E\left[m_{s e} \mid s=i\right]}{E\left[m_{s e}\right]}
$$

From Euro bonds, we obtain

$$
\pi_{i} \frac{E\left[m_{s e} \mid s=i\right]}{E\left[m_{s e}\right]}
$$

So we can mix if:

$$
\frac{E\left[e \cdot m_{s e} \mid s=i\right]}{E\left[m_{s e} \mid s=i\right]}=\frac{E\left[e \cdot m_{s e}\right]}{E\left[m_{s e}\right]}
$$

Robustness: Currencies

- Now take Euro-denominated CDS for i. Counterparty j American.
- $s \in\{i, j, i j, 0\}$

$$
\begin{gathered}
z_{j i} e_{0}=(1-R) \pi_{i} E\left[e \cdot m_{s e} \mid s=i\right]+(1-R) S \pi_{i j} E\left[e \cdot m_{s e} \mid s=i j\right] \\
=E\left[e \cdot m_{s e}\right]\left((1-R) \pi_{i} \frac{E\left[e \cdot m_{s e} \mid s=i\right]}{E\left[e \cdot m_{s e}\right]}+(1-R) S \pi_{i j} \frac{E\left[e \cdot m_{s e} \mid s=i j\right]}{E\left[e \cdot m_{s e}\right]}\right)
\end{gathered}
$$

- So: condition is for every s

$$
\frac{E\left[e \cdot m_{s e} \mid s\right]}{E\left[m_{s e} \mid s\right]}=\frac{E\left[e \cdot m_{s e}\right]}{E\left[m_{s e}\right]}
$$

Robustness: TRACE, larger transactions

- Quoted data might have lags and matrix prices
- Small trades might be less reflective of credit risk
- Results using
- only US banks
- TRACE trades $>=\$ 100,000$

Discussion: Arora et al.

- Arora, Gandhi and Longstaff (2010) run the regression for bond k :

$$
z_{j k, t}=a_{k, t}+b z_{j, t-1}+e_{j k, t}
$$

- Find that b is negative but small
- Default probability of the counterparty little cross-sectional effect on price.
- First point:
- The starting point of my paper is the difference between $P\left(A_{j}\right)$ and $P\left(A_{i} \cap A_{j}\right)$
- Only $P\left(A_{i} \cap A_{j}\right)$ is priced in the CDS, not $P\left(A_{j}\right) \approx z_{j, t}$.
- Second point:
- $a_{k, t}$ removes all average counterparty risk
- This paper is based only on the pricing of average counterparty risk
- Even if for some reason there is compression of quotes

Discussion: Arora et al.

- Third point:
- cross-sectional difference in S (collateralization) might induce lower dispersion of quotes
- If S_{j} is different by j the average quote reflectes a weighted average of $P\left(A_{i} \cap A_{j}\right)$

$$
\begin{aligned}
& \frac{z_{1 i}+z_{2 i}}{2}=P\left(A_{i}\right)-\frac{\left(1-S_{1}\right)}{2} P\left(A_{i} \cap A_{1}\right)-\frac{\left(1-S_{2}\right)}{2} P\left(A_{i} \cap A_{2}\right) \\
& =P\left(A_{i}\right)-(1-S)\left[\frac{\left(1-S_{1}\right)}{(1-S) 2} P\left(A_{i} \cap A_{1}\right)+\frac{\left(1-S_{2}\right)}{(1-S) 2} P\left(A_{i} \cap A_{2}\right)\right]
\end{aligned}
$$

where $S=\frac{S_{1}+S_{2}}{2}$

- Lower collateral requirement -> lower S -> higher weight
- Robustness: biggest dealers (Goldman, DB, JPM) safer
-> less collateral
- Smaller dealers (Lehman, Merrill) -> more collateral

Explore: ETF binary puts

